
Eur. Phys. J. B 4, 219–221 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Field theoretical calculation of the specific heat exponent
for a classical N-vector model in a random external field

K. Ghosha, A. Duttab, and J.K. Bhattacharjee

Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, Calcutta 700032, India

Received: 18 March 1998 / Revised: 17 April 1998 / Accepted: 21 April 1998

Abstract. We calculate using diagrammatic perturbation theory in the two-loop approximation, the specific
heat exponent α for the classical N-vector model in a random external field for spatial dimension (D) lying
between four and six. The calculation supports the modified hyperscaling (D− 2)ν = 2−α, where ν is the
correlation length exponent.

PACS. 75.40.-s Critical-point effects, specific heats, short-range order – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

The study of random field systems, specially random field
Ising models has been an exciting area of theoretical and
experimental investigations [1]. We consider the question
of the specific heat exponent in random systems. Unlike
the other exponents, this exponent is generally not calcu-
lated directly, but is arrived at through the appropriate
scaling relations. In general, it is the hyperscaling rela-
tion [2] ((D−θ)ν = 2 − α), which is frequently used since
ν is the exponent which is easiest to calculate. In disor-
dered systems, the randomness associated with the disor-
der usually overwhelms the temperature fluctuations [3,4]
and thus there is an effective dimensionality, which comes
into play. In general, it is this dimensional reduction [5]
(θ) which one calculates and thus gets α from the modi-
fied hyperscaling relation. In this paper, we show for the
classical N -vector model in a random external field that
the usual diagrammatic tools can be used to calculate “α”
directly and the modified hyperscaling is directly verified.
The model and the correlation function for the specific
heat are prescribed in Section 2, while the calculation of
α is given in Section 3.
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2 The model and the specific heat

We begin with the continuum free energy functional for a
N component field φ

F =

∫
dDx

[
r

2

N∑
i=1

φiφi +
1

2
(∇φi) . (∇φi)

+
u

4
(φiφi)

2 − hiφi

]
(1)

where φi denotes the i-th component of the N -component
vector φi and the field h distributed according to

P (h) =
1

√
2π∆

e−h
2/2∆ (2)

and r = T − T0 carrying the temperature dependence.
As usual, our task is to calculate the partition function

which is given by

Z =

∫
dhP (h)

∫
D[φ]e−F . (3)

The randomness being frozen, we are required to actually
do the thermal fluctuation calculation with the distribu-
tion of h fixed and then average over the distribution of h.
The technical problem involved in this is surmounted by
the so-called “replica trick” where one considers n repli-
cas of the system under consideration and finally takes the
limit of n → 0. The quantity that one thus construct is
Zn and the limit n → 0, ensures that the free energy

F = − lnZ = − lim
n→ 0

1

n
(Zn − 1) (4)
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Fig. 1. The single loop
contribution to the spe-
cific heat. The straight
line denotes the propaga-
tor with ∆ = 0, while
the circled line stands for
the part of the propaga-
tor which is proportional
to ∆. (b) The two loop
contribution to the spe-
cific heat. The contribu-
tion of (i) and (ii) van-
ish since u is irrelevant,
while the contributions of
(iii), (v) and (vi) vanish
in the limit n → 0 be-
cause the replica combi-
natorics yields respective
factors of n, n and n2 for
the three cases.

is correctly obtained. In the replicated partition function
Zn, the average over h can be performed and one is left
with the calculation

Zn =

∫
D[φ]e−A (5)

A =

∫
dDx

[
r

2
φαi φ

α
i +

1

2
(∇φαi ) . (∇φαi )

+
u

4
(φαi φ

α
i )

2 −
∆

2

(∑
α

φαi

)∑
β

φβi

 . (6)

The specific heat is then given by C ∼ −∂
2F
∂T 2 ∼ −

∂2F
∂r2

and combining equations (4, 5, 6), we see

C ∼ lim
n→0
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×
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〉
. (7)

The correlation function above, although not explicitly
connected, is actually a connected correlation function,
since the disconnected part vanishes in the limit n → 0.

3 Calculation of α

The basic ingredient of the calculation is the Gaussian
correlation function [6]

G
(o)
αβ(k) =

1

r + k2
δαβ +

∆

(r + k2)(r + k2 − n∆)
· (8)

In the Gaussian limit, the specific heat is simply (Fig. 1a)

CGaussian∼ lim
n→ 0
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Since the lower critical dimension is 4 for the classical
N -vector model in a random field [1], we need the above
integral for 4 < D < 6 (the upper critical dimension). In
this above range the first integral is finite when an upper
cut off is used. The long wavelength divergence comes from
the second integral which consequently dominates for all
D and we have

4CGaussian
V

∼ ∆

∫
dDp

(p2 + r)3

∼ r(D−6)/2. (10)

Thus,

αGaussian =
6−D

2
· (11)

From equation (8), we can read off the exponent ν as being
1/2 in the Gaussian limit and thus (2 − α)/ν = D − 2
giving rise to the hyperscaling relation

(D − 2)ν = 2− α. (12)

We can now proceed beyond the Gaussian limit. Before,
taking up the ε− expansion calculation (ε = 6 − D), it is
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Fig. 2. (a) The propaga-
tor in the spherical limit.
(b) The specific heat in
the spherical limit.

instructive to see the answer in the spherical limit [7] i.e.
N →∞. In the spherical limit [8],

G−1
αβ = G

−1 (0)
αβ −Σαβ , (13)

where the self energy Σ(k) is given by (Fig. 2a)

Σαβ =

∫
dDpGαβ(p). (14)

The integral is dominated by the second term and thus
the shift in Tc is finite only for D > 4, which shows that
D = 4 is the lower critical dimension. For D > 4, standard
arguments now yield ν = 1

D−4 i.e. the spherical limit
propagator is

G
(s)
αβ(k) =

1

m2 + k2
δαβ +

∆

(m2 + k2)(m2 + k2 − n∆)
(15)

wherem2 ∝ (T−Tc)2/(D−4). The single loop (Fig. 1a) now
scales as (T − Tc)

(D−6)/(D−4) and the specific heat which
is given by the buble sum (Fig. 2b) in the spherical limit
is consequently given by [9] A + B|T − Tc|(6−D)/(D−4) +
higher order terms, giving α = (D − 6)/(D − 4). Once
again, (2 − α)/ν = D− 2, in agreement with the hyper-
scaling in equation (12).

To carry out a two loop calculation in the ε− expan-
sion, we need to remember the following facts [10].

1. For 6 > D > 4, the variable u is irrelevant i.e. u→ 0.
2. The combination u∆ is relevant for D < 6 and has

a finite fixed point value, which controls the critical
exponents for 6 > D > 4.

Keeping the above in mind and doing the replica com-
binations first, we find that u, u∆, u∆3 and u∆4 terms
disappear (we are comparing with the single loop term
which is proportional to ∆). The two loop contribution to
the specific heat consequently is

C ∝ ∆

[∫
dDp

(p2 + r)3
− u∆(N + 2)

[∫
dDp

(p2 + r)3

]2
]
.

(16)

Straightforward analysis now yields

α

ν
=

4−N

N + 8
ε. (17)

With ν = 1
2 (1+ N+2

2(N+8)ε), we again have (2−α)/ν = D−2

correct to O(ε).

4 Conclusion

Thus, we see that correct to O(ε), the dimensional reduc-
tion θ is 2. With the lower critical dimension working out
to be D = 4, higher by 2 from the lower critical dimension
of the normal system, θ = 2 at D = 4 as well. This would
lead one to suppose that θ = 2 for 6 ≥ D ≥ 4. However,
the region close to D = 4, could be tricky.

We end by noting that the exponent β can be directly
calculated from the correlation function using the scaling
developed by Bray and Moore [2] and this, taken with
our α and the known γ, yields the Rushbrooke equality
α + 2β + γ = 2 correct to O(ε) and in the spherical limit.
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